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CHAPTER 10 -- GRAVITATION

10.1)  According to Newton, the magnitude of the gravitational force between
any two bodies will always be equal to Gm1m2/r2.

a.)  The gravitation force you exert on your friend will be:

     Fon friend   =               G                         myou     mfr     /   r
2

= (6.67x10-11 nt.m2/kg2)(80 kg)(60 kg)/(5 m)2

= 1.28x10-8 nts.

Note:  If you cut a ping pong ball into a million and a half or so pieces, this
force would approximately equal the weight of one piece.

b.)  As for the acceleration, Newton's Second Law yields:

  ∑ Fx :

Ffr = mfra
          ⇒    a =        Ffr              /  mfr

     = (1.28x10-8 nt)/(60 kg)
              ⇒        = 2.13x10-10 m/s2.

Note:  You can now see why you don't feel a gravitational force when you
brush past a friend on the street.  The Universal Gravitational Constant G is so
small that at least one of the masses has to be enormous before gravitational
effects become noticeable.

10.2)  Figure I below shows an f.b.d. for the forces acting on the top mass,
complete with components.  Figure II below shows how the radius r of the orbits
can be determined.
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Due to symmetry, the horizontal components will add to zero leaving only the
vertical components with which to contend.  Noting that the masses are all the
same and the radius of the circular motion is .577d, we can use N.S.L. in the center-
seeking direction to write:

     
  
∑ Fcenter-seeking :

     -Fgcos θ  - Fgcos θ  = -mac
⇒     2[Gm2/d2]cos 30o = m(v2/r)

      = mv2/[.577d]
⇒     v = (Gm/d)1/2.

10.3)  This is a straight freefall problem (i.e., although we will be using
Newton's gravitational force, the force is not acting centripetally).

a.)  The earth to moon distance (center of mass to center of mass) is
3.82x108 meters plus 1.74x106 meters plus 6.37x106 meters, or
approximately 3.9x108 meters.  Summing the forces in the direction of
freefall, we can write:

           ∑ Fr :

       -Gmmme/r2 = -mma

  ⇒       a = Gme/r
2

     = (6.67x10-11 nt.m2/kg2)(5.98x1024 kg)/(3.9x108 m)2

         = 2.62x10-3 m/s2.

b.)  The distance between the moon's center of mass and the earth's center
of mass just before they strike one another will be the sum of their radii.  Using
that observation and repeating the calculation done in Part a, we get:

           ∑ Fr :

       -Gmmme/re,m
2 = -mma

    ⇒    a = Gme/re,m
2

= (6.67x10-11 nt.m2/kg2)(5.98x1024 kg)/(8.11x106 m)2

    = 6.06 m/s2.

c.)  The acceleration is not a constant (obviously), so kinematics is out.
The best approach is using conservation of energy.  Remembering that the
potential energy function for a varying gravitational field is U = -Gm1m2/r (a
scalar), we can write:
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 ∑KE1 +          ∑U1      + ∑Wext =     ∑KE2     +               ∑U2
(0)     + (-Gmmme/r) +    (0)     = (1/2)mmv2 + [-Gmmme/(rm + re)]

               ⇒     v = [2Gme[-1/r + 1/(rm + re)]]1/2

  = [2(6.67x10-11 nt.m2/kg2)(5.98x1024 kg)[-1/(3.9x108 m) + 1/(1.74x106 + 6.37x106 m)]]1/2

            ⇒     v = 9814 m/s.

d.)  If the earth is allowed to move, we have to take into consideration its
kinetic energy at the end of the freefall (its initial kinetic energy is zero). This
means we now have a second unknown--the earth's velocity--to deal with.  To get
an expression relating the earth's velocity ve to the moon's velocity vm, note that
the only force acting in the system--gravity--is internal to the system (that is,
the moon exerts a gravitational force on the earth and the earth exerts an equal
and opposite gravitational force on the moon).  That means momentum is
conserved.

With everything starting from rest, the system's initial net momentum (and
the system's subsequent net momentum) is zero.    Using that bit of
information, we can write:

po = pjust before impact
⇒   0 = -mmvm + meve

⇒   ve/vm = mm/me.

Knowing the mass of the earth and moon, we now have the relationship we need
between the earth's velocity and the moon's velocity (i.e., our second equation).

10.4)
a.)  The magnitude of the force applied to m1 a distance r from the planet's

center is:

     F = G(minside sphere)m1/r2,

where minside sphere is the mass inside the sphere upon which the body sits.  To
determine that mass, define a differential sphere of radius a and thickness da.
Its differential volume will be its surface area times its thickness, or dV =
(4a2)da.  Defining the volume density function to be ρ , we can write:



560

    

m dv

m
r

a a da

m
r

a da

m
r

a

m
r

r

insidesph

p

p
a

r

p

p
a

r

p

p a

r

p

p

=

=












π[ ]

=
π

=
π 









=
π

∫

∫

∫

=

=

=

ρ

            

            

            

            

40

2

4
3

0

4

4

0

4
4

4

4

4
4

.

Using this, we can write:

 F = G(minside sphere)m1/r2

    = G(mpr4/rp
4)m1/r2

    = Gmpm1(/rp
4)r2.

Note that at r = 0, we don't find a zero in the denominator as before.

b.)  The potential-energy-equals-zero-point for a variable force function is
ALWAYS placed where the force is zero.  In this case, that is at the planet's
center.  If we assume the body is sitting at some position y = r up the vertical
axis (i.e., we are assuming the tunnel is in the vertical), then the force on the
mass m1 when at an arbitrary point y will be -Gmpm1(/rp

4)y2 (from Part a)
Setting U(y = 0) = 0, we can write:
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Again, this makes sense.  At r = 0, the potential energy is zero.

10.5)  We know the orbital distance from the earth's center of mass is r = 1.3x106 m
+ 6.3x106 m = 7.6x106 meters, and we know that this is additionally the distance
between the centers of mass of the two bodies (the two quantities are the same as the
satellite's mass is minuscule in comparison to the earth's mass).

a.)  One of the things that makes orbital problems tricky is that there are a
number of ways one can determine a velocity.  Conservation of energy has
velocities in it, but so does N.S.L. coupled with centripetal acceleration.  Knowing
which approach to use in a given situation is something that comes only with
experience.  In this particular case, we want to look at the forces acting on the
satellite.

       ∑ Fc :

        -Fg          =    -mac
      ⇒     Gmsme/r2 = ms(v

2/r)

⇒    v = (Gme/r)1/2

= [(6.67x10-11 nt.m2/kg2)(5.98x1024 kg)/(7.6x106 m)]1/2

= 7244 m/s.

b.)  If it takes time T for the satellite to travel the circumference of the circle
upon which it moves, then the ratio of those two quantities (i.e., distance/time)
will yield the magnitude of its velocity.  As T is defined as the period of the
motion (i.e., the time for one complete orbit), we can write:

v = (circumference)/(period)
   = 2r/T
            ⇒     T = 2r/v

 = 2(7.6x106 m)/(7244 m/s)
 = 6592 seconds      (approx. 1 hr, 50 min.).

c.)  The work we have to do in getting the satellite up to speed is equal to the
body's final kinetic energy.  The work we have to do in lifting the satellite into the
appropriate orbit is equal to minus the work gravity does on the body as the
body rises, or ∆Ug (remember, the work gravity itself does as the body rises is
-∆U).  If we add these two work quantities together, we have the amount of
energy we have to provide to the system to get the satellite into orbit.

. . . Or, we could simply use the modified conservation of energy equation.  In
that expression, the ∑ Wext term denotes the extra energy needed from us to put
the satellite in orbit.  Using that expression, we can write:
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      ∑KE1 +          ∑U1      + ∑Wext =   ∑KE2       +      ∑U2
         (0)    + (-Gmsme/re) +   Eyou   = (1/2)msv

2  + (-Gmsme/r),

where v is the orbital velocity of the satellite and r is the orbital radius from the
earth's center.

Solving yields:

                     Eyou = (1/2)msv
2 + Gmsme[1/re - 1/r]

           = .5(400 kg)(7244 m/s)2 + (6.67x10-11 nt.m2/kg2)(5.98x1024 kg)(400 kg)[1/(6.3x106 m) - 1/(7.6x106 m)]

⇒     Eyou = 1.48x1010 joules.

Note:  If we had used the orbital energy expression E = -Gmsme/2r from the

chapter, we would have ended up with -1.05x1010 joules (this, if you will remember, is
KEr + Ur).  So why doesn't the orbital energy expression equal the work required to put
the satellite into orbit?

The answer is simple.  The body started out with potential energy.  Sitting on
the earth's surface with -Gmems/re = -2.53x1010 joules of potential energy (put in the
numbers--that's what you get).  Add the energy needed to get it into orbit (i.e., the
1.48x1010 joules) and you end up with the satellite's net final energy equaling
-1.05x1010 joules.

d.)  The earth's angular velocity is 2 radians per 24 hours (give or take a
bit).  That calculates out to ω  = 7.27x10-5 radians/second.  At the equator, the
magnitude of the earth's translational velocity is v = requ ω  = (6.3x106

m)(7.272x10-5 rad/sec) = 458 m/s.
A satellite launched in the direction of the earth's rotation at the equator

will begin its trip with initial kinetic energy equal to (1/2)mve
2, where ve is the

velocity of the rotating earth.
In the case of our satellite, it would start out with kinetic energy equal to

(1/2)(400 kg)(458 m/s)2 = 4.2x107 joules worth of energy we wouldn't have to
supply to the system to get it into its orbit.

It should now be obvious why launching pads in the U.S. (Cape Canaveral,
for instance) are as close to the equator as possible.

e.)  In 1800 revolutions, the energy lost to the satellite will be:
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Elost= (1800 rev)(2x105 joules/rev)

         = 3.6x108 joules.

The amount of energy it starts out with as it traveled in its orbit is:

      E1 = -Gmems/2r1
= -(6.6x10-11 nt.m2/kg2)(5.98x1024 kg)(400 kg)/[2(7.6x106 m)]
= -1.049x1010 joules.

After losing 3.6x108 joules of energy, the satellite has:

           E2 =              E1                    -          Elost
= (-1.049x1010 joules) - (3.6x108 joules)
= -1.085x1010 joules.

An orbit with that amount of energy must be such that:

     E2 = -Gmems/2r2
⇒   r2 = -Gmems/2E2

 = -(6.67x10-11 nt.m2/kg2)(5.98x1024 kg)(400 kg)/[2(-1.085x1010 j)]
 = 7.35x106 meters.

This is the distance from the earth's center.  From the earth's surface, the
height will be 7.35x106 meters minus 6.3x106 meters equals 1.05x106 meters.

Although the problem did not ask for the velocity of the satellite when in
this orbit, we will need it later.  Using N.S.L., we can write:

∑Fr:
        Fg = mac
     ⇒     Gmsme/r2

2 = ms(v2
2/r2)

⇒    v2 = (Gme/r2)1/2

= [(6.67x10-11 nt.m2/kg2)(5.98x1024 kg)/(7.35x106 m)]1/2

= 7366 m/s.

f.)  The retarding force does 2x105 joules per revolution of work on the
satellite as the satellite moves along in its path.  On average, the work done by
the retarding force in one orbit will equal the average force times the average
circumference of motion times cos 180o (the retarding force and the direction of
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motion will be opposite one another, hence the 180o angle).  Approximating the
average radius to be (r1 + r2)/2, we can determine the work calculation for one
average orbit.  Doing so yields:

        2x105 = Favg(2ravg) cos 180o

       = -Favg[2(r2 + r1)/2]

        = -Favg[2(7.35x106 + 7.6x106)/2]

        = -(4.7x107)Favg
       ⇒    Favg = -.0043 newtons

g.)  The modified conservation of angular momentum expression is:

∑L1 + ∑Γext∆t = ∑L2,

where the L terms are angular momentum quantities and the Γ ∆t is a torque
driven, impulse-related quantity (remember, the modified conservation of linear
momentum equation was ∑p1 + ∑Fext∆t = ∑p2, where the Fext∆t term was the
impulse being delivered by external forces over the time interval ∆t).

The average external torque about the planet's orbital axis is:

             Γext = rs,avgxFavg.

Noting that the frictional force Favg is perpendicular to the radius vector
rs,avg, the magnitude of the torque will simply be the product of the radius and

force vectors (sin 90o = 1).  Assuming the direction of the satellite's angular
velocity is positive and noting that the torque slows the motion, our friction-
induced torque will be negative.  As such, we can write:

Γext = -rs,avgFavg.

The angular momentum of the satellite will equal:

L = rs,avgxp,

where again the angle between the vectors is 90o and the sine of the angle is 1.  As
the magnitude of the momentum is msvs, we can write in general:
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L = rs,avgmsvs.

Using all this information in our modified conservation of angular momentum
equation, we can solve for ∆t:

∑L1                   +                       ∑Γext       ∆t =                        ∑L2
rs,1             ms              vs,1      -        rs,avg              Favg   ∆t =           rs,2            ms           vs,2

(7.6x106 m)(400 kg)(7244 m/s) - (7.475x106 m)(.004 nt)∆t = (7.35x106 m)(400 kg)(7366 m/s)
  ⇒     ∆t = 1.223x107 seconds.

This rounded-off value is approximately 141 days, 13.5 hours.

10.6)
a.)  The conserved quantities for planetary motion are angular momentum

(there are no external torques acting on the planet), and energy (there is
practically no frictional effect in space, and there are generally no appreciable
non-conservative forces acting on planets--asteroid collisions excepted).

b.)  At rmin,
the star has U1 =

-5x1033 joules
(see graph) and
kinetic energy
KE1 = 2.5x1033

joules.  That
means the total
energy of the
system is KE1+

U1 = -2.5x1033

joules.  In
addition, the sum
of the potential
and kinetic
energies must
always equal that
number (energy is
conserved).
Because we know
the total energy in
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the system, and because we have a graph of the potential energy as a
function of position, we can determine the kinetic energy as a function of
position for any point in the orbit.  Doing that for key points (example: at
rmax, the graph tells us that the potential energy is approximately Umax =

-4.2x1033 joules . . . that means KEmax - 4.2x1033 joules = total energy =

-2.5x1033 joules, or KEmax = 1.7x1033 joules at that point), and
remembering that the kinetic energy function mirrors the potential energy
function when the total energy is constant, we can draw the kinetic energy
graph as shown below.


